Total Tayangan Halaman

Selasa, 15 November 2016

TURBIN GAS

Turbin gas adalah sebuah mesin panas pembkaran dalam. Proses kerjanya seperti motor bakar, yaitu udara atmosfer dihisap masuk kompresor dan dikompresi. Kemudian, udara mampat masuk ruang bakar dan dipakai untuk proses pembakaran, sehingga diperoleh suatu energi panas yang besar.

Persamaan turbin gas dengan motor bakar adalah pada proses pembakarannya yang terjadi di dalam mesin itu sendiri. Disamping itu, proses kerjanya adalah sama yaitu hisap, kompresi, pembakaran, ekspansi dan buang. Perbedaannya adalah terletak pada konstruksinya. Motor bakar kebanyakan bekerja gerak bolak balik (reciprocating), Sedangkan turbin gas adalah mesin rotasi. Selain itu, Proses kerja motor bakar bertahap (intermiten), Sedangkan turbin gas adalah kontinu dan gas buang pada motor bakar tidak pernah di pakai untuk gaya dorong.
Gambar Proses Kerja(a) turbin gas dan (b)motor bakar

·Turbin gas bekerja secara kontinu tidak terhadap. Semua proses yaitu hisap, kompresi,
  pembakran, dan buang adalah berlangsung bersamaa.
·Motor bakar yang prosesnya bertahap dinamakan langkah, yaitu langkah hisap, kompresi,  pembakaran, ekkspansi, dan langkah buang. Antara langkah satu dan lainnya saling 
 bergatung dan bekerja bergantian.

Pada proses ekspansi turbin gas, terjadi perubahan energi dari energi panas menjadi energi mekanik putaran poros turbin, sedangkan pada motor bakar pada langkah ekspansi terjadi perubahan dari energi panas menjadi enrgi mekanik gerak bolak-balik torak. Dengan kondisi tersebut, turbin gas bekerja lebih halus dan tidak banyak getaran.
Turbin gas banyak digunakan untuk mesin propulsi atau jet, mesin otomotif, tenaga pembangkit listrik, atau penggerak peralatan-peralatan industri seperti penggerak kompresor atau pompa. Daya yang dihasilkan turbin gas mulai dari 250.000 HP untuk pembangkit listrik 5 HP pada turbocharger pada mesin motor.
Keunggulan dari turbin gas adalah mesinnya yang ringan dan ukuran yang kecil bisa menghasilkan daya yang besar. Sebagai contoh pada gambar
adalah turbin gas yang biasa dipakai untuk penggerak generator listrik kecil. Generator ini banyak dipakai untuk mengantisipasi beban puncak jaringan sehingga fungsinya bisa menggantikan kalau terjadi pemadaman listrik.

1.DASAR KERJA TURBIN GAS
Pada gambar di samping adalah salah salah satu mesin turbin gas pesawat
  terbang.
Cara Kerjanya adalah sebagai berikut :
Motor starter dinyalakan, kompresor Berputar dan mulai bekerja menghisap udara sekitar, udara kemudian dimampatkan. Udara pada tahap pertama dimampatkan dahulu pada kompresor  tekanan rendah, kemudian diteruskan kompresor tekanan tinggi. Udara mampat selanjutnya masuk ruang bakar, bercampur dengan bahan bakar yang sudah disemprotkan. Campuran bahan bakar udara mampat kemudian dinyalakan dan terjadi proses pembakaran. Gas hasil proses pembakaran berekspansi pada turbin sehingga terjadi perubahan dari energi panas menjadi energi putaran poros turbin. Sebagian gas pembakaran menjadi gaya dorong. Setelah memberikan sisa gaya dorongnya, gas hasil pembakaran keluar melalui saluran buang.


Dari Proses kerja turbin gas pesawat terbang tersebut, di hasilkan daya turbin yang digunakan untuk memgerakkan kompresor, menghasilkan daya dorong, dan menggerakan peralatan bantu lainnya Terlihat pada gambar, turbin gas pada sayap pesawat terbang untuk  menghasilkan daya dorong. Turbin gas harus ringan, daya besar dan tingkat keberhasilan selama beroperasi harus 100%
Animasi Mesin Turbojet Pesawat Terbang


Berbeda dengan mesin turbojet pesawat terbang, sebagian kecil energi panas udara hasil pembakaran digunakan untuk memutar turbin, yang selanjutnya energi putaran tersebut digunakan untuk memutar kompresor. Sebagian besar energi panas pada udara hasil pembakaran mesin jet digunakan untuk mendorong pesawat, dimana pada sisi keluaran turbin berbentuk nozzle. Nozzle ini berfungsi untuk meningkatkan kecepatan dorong gas buang, sehingga mendapatkan gaya dorong yang lebih besar bagi pesawat.
Mesin Turbojet Pesawat Terbang

                           
Turbin gas yang dipakai industri dapat dapat dilihat gambar. Cara kerjnya sama dengan turbin gas pesawat terbang. Motor starter dinyalakan untuk memutar kompresor, udara segar terhisap masuk dan dimampatkan. Kemudian, udara mampat dengan temperatur dan tekanan yang cukup tinggi ( 200 0C, 6 bar) mengalir masuk ruang bakar, bercammpur dengan bahan bakar.
Turbin Gas
Campuran udara mampat bahan bakar kemudian dinyalakan dan terjadi proses pembakaran, temperatur tinggi (6 bar, 750 0C) berekspansi pada turbin sehingga terjadi perubahan energi, dari energi panas menjadi energi putaran poros turbin. Gas Pembakaran setelah berekspansi di turbin, lalu keluar sebagai gas bekas. Selanjutnya, turbin gas bekerja dengan putaran poros turbin, Yaitu Sebagai  sember tenaga penggerak kompresor dan generator listrik.
 

2. PROSES PEMBAKARAN

Pada gambar dapat dilihat dari kontruksi komponen ruang bakar, apabila digambarkan ulang dengan proses pembakaran adalah sebagai di samping. mampat dari kompresor masuk saluran primer, berada satu tempat dengan nosel, dan uda mampat sekunder yang lewat selubang luar ruang bakar. Udara primer masuk ruang bakar melewati swirler, sehinga alirannya berputar. Bahan bakar kemudian disemprotkan  dari nosel ke zona primer, setelah ke duannya bertemu , terjadi pencampuran.Aliran udara primer yang berputar akan membantu proses pencampuran. Hal ini memyebabkan campuran lebih homogen, pembakaran lebih campuran. Udara sekunder yang masuk melalui lubang-lubang pada selubang luar ruang bakar akan membantu proses pembakar pada zona sekuder. Jadi, zona sekunder akan menyempurnakan pembakaran dari zona primer. Di samping untuk membantu proses pembakaran pada zona sekunder, udara sekunder juga membandu pendinginan ruang bakar, ruang bakar harus di dinginkan karena dari proses pembakaran dihasilkan temperatur yang tinggi yang merusak material ruang bakar. Dengan cara pendinginan udara sekunder, temperatur uang bakar menjadi terkontrol dan tidak melebihi dari ijinkan.
Ruang Bakar

Ruang bakar turbin gas ditempatkan disamping rumah turbin, dengan maksud saluran udara dari kompresor dan gas pembakaran menjadi pendek sehingga kerugian aliran kecil. Saluran gas panas ditempat di dalam saluran udara kompresor sehingga tidak membutuhkan isolasi panas yang khusus. Untuk menghindari gumpalan-gumpalan gas panas karena tidak bercampur dengan udara segar, saluran gas dibuat dibelokan 90o dua kali sehingga gas panas dan udara bercampur dengan baik, sebelum masuk turbin. Pengaturan kecepatan udara dari kompresor juga penting, kecepatan udara yang rendah akan mengakibatkan api akan merambat kearah kompresor dan sebaliknya api akan ke luar dari ruang bakar yang mengakibatkan ruang bakar menjadi dingin dan api dapat mati.
Ruang bakar turbin gas pesawat terbang konstruksinya. Ruang bakar harus menghemat ruang dan dipasang disekeliling sumbu tengah. Ruang bakar dengan pipa api di dalamnya masing-masing berdiri sendiri sehingga apabila salah satu ruang bakar mati yang lainnya tidak terpengaruh. Dibagian luar ruang bakar terdapat lubang udara primer dan sekunder, nosel bahan-bakar dan penyalanya dan juga terdapat lubang- lubang pendingin. Disini udara pendingin sangat penting untuk menjaga ruang bakar dari temperatur yang terlampau tinggi sehingga gas pembakaran yang mengalir ke turbin juga tidak terlalu tinggi.
Mesin Turbofan
Mesin Turbofan
Mesin turbofan ada tipe mesin jet pesawat terbang yang mirip dengan mesin turbojet. Mesin ini umumnya terdiri dari sebuah kipas internal dengan sebuah turbojet kecil yang terpasang dibelakangnya untuk menggerakkan kipas tersebut. 

Aliran udara yang masuk melalui kipas ini melewati turbojet, dimana sebagian kecil udara itu dibakar untuk menghidupi kipas, dan sisa udara digunakan untuk menghasilkan dorongan.
Semua mesin jet yang digunakan untuk pesawat jet komersial masa kini adalah mesin turbofan. Mesin ini lebih banyak digunakan karena sangat efesien dan relatif menghasilkan suara yang lebih kecil.
Turboprop
Turboprop

Mesin Turboprop adalah mesin pesawat terbang dengan turbin gas terhubung ke baling-baling. Turbin gas dirancang khusus untuk keperluan ini, dengan hampir semua keluarannya digunakan untuk memutar baling-baling. Gas keluaran turbin mengandung energi yang kecil dibandingkan dengan turbojet dan berperan kecil dalam mendorong pesawat.

Sekian yang saya bisa kerjakan, Semoga berguna
#hanyatugas
http://franzdeassiz.blogspot.co.id/
Daryanto.2011.Teknik Konversi Energi.PT. Sarana Tutorial Nuraini Sejahtera


Senin, 21 Maret 2016

Mata Kuliah Sistem Distribusi

Klasifikasi Saluran Transmisi berdasarkan Tegangan
Selama ini ada pemahaman bahwa yang dimaksud transmisi adalah proses penyaluran energi listrik dengan menggunakan tegangan tinggi saja. Bahkan ada yang memahami bahwa transmisi adalah proses penyaluran energi listrik dengan menggunakan tegangan tinggi dan melalui saluran udara (over head line). Namun sebenarnya, transmisi adalah proses penyaluran energi listrik dari satu tempat ke tempat lainnya, yang besaran tegangannya adalah Tegangan Ultra Tinggi (UHV), Tegangan Ekstra Tinggi (EHV), Tegangan Tinggi (HV), Tegangan Menengah (MHV), dan Tegangan Rendah (LV).


Sedangkan Transmisi Tegangan Tinggi, adalah:
• Berfungsi menyalurkan energi listrik dari satu gardu induk ke gardu induk lainnya.
• Terdiri dari konduktor yang direntangkan antara tiang-tiang (tower) melalui isolator-isolator, dengan sistem tegangan tinggi.
• Standar tegangan tinggi yang berlaku di Indonesia adalah : 30 KV, 70 KV dan 150 KV.

Beberapa hal yang perlu diketahui:
• Transmisi 30 KV dan 70 KV yang ada di Indonesia, secara berangsur-angsur mulai ditiadakan (tidak digunakan).
• Transmisi 70 KV dan 150 KV ada di Pulau Jawa dan Pulau lainnya di Indonesia. Sedangkan transmisi 275 KV dikembangkan di Sumatera.
• Transmisi 500 KV ada di Pulau Jawa.

Di Indonesia, kosntruksi transmisi terdiri dari :
• Menggunakan kabel udara dan kabel tanah, untuk tegangan rendah, tegangan menengah dan tegangan tinggi.
• Menggunakan kabel udara untuktegangan tingg dan tegangan ekstra tinggi.

Berikut ini disampaikan pembahasan tentang transmisi ditinjau dari klasifikasi tegangannya:

1. SALURAN UDARA TEGANGAN EKSTRA TINGGI (SUTET) 200 KV – 500 KV

• Pada umumnya digunakan pada pembangkitan dengan kapasitas di atas 500 MW.
• Tujuannya adalah agar drop tegangan dan penampang kawat dapat direduksi secara maksimal, sehingga diperoleh operasional yang efektif dan efisien.
• Permasalahan mendasar pembangunan SUTET adalah: konstruksi tiang (tower) yang besar dan tinggi, memerlukan tapak tanah yang luas, memerlukan isolator yang banyak, sehingga pembangunannya membutuhkan biaya yang besar.
• Masalah lain yang timbul dalam pembangunan SUTET adalah masalah sosial, yang akhirnya berdampak pada masalah pembiayaan, antara lain: Timbulnya protes dari masyarakat yang menentang pembangunan SUTET, Permintaan ganti rugi tanah untuk tapak tower yang terlalu tinggi tinggi, Adanya permintaan ganti rugi sepanjang jalur SUTET dan lain sebagainya.
• Pembangunan transmisi ini cukup efektif untuk jarak 100 km sampai dengan 500 km.

2. SALURAN UDARA TEGANGAN TINGGI (SUTT) 30 KV – 150 KV

• Tegangan operasi antara 30 KV sampai dengan 150 KV.
• Konfigurasi jaringan pada umumnya single atau double sirkuit, dimana 1 sirkuit terdiri dari 3 phasa dengan 3 atau 4 kawat. Biasanya hanya 3 kawat dan penghantar netralnya digantikan oleh tanah sebagai saluran kembali.
• Apabila kapasitas daya yang disalurkan besar, maka penghantar pada masing-masing phasa terdiri dari dua atau empat kawat (Double atau Qudrapole) dan Berkas konduktor disebut Bundle Conductor.
• Jika transmisi ini beroperasi secara parsial, jarak terjauh yang paling efektif adalah 100 km.
• Jika jarak transmisi lebih dari 100 km maka tegangan jatuh (drop voltaje) terlalu besar, sehingga tegangan diujung transmisi menjadi rendah.
• Untuk mengatasi hal tersebut maka sistem transmisi dihubungkan secara ring system atau interconnection system. Ini sudah diterapkan di Pulau Jawa dan akan dikembangkan di Pulau-pulau besar lainnya di Indonesia.

3. SALURAN KABEL TEGANGAN TINGGI (SKTT) 30 KV – 150 KV
SKTT dipasang di kota-kota besar di Indonesia (khususnya di Pulau Jawa), dengan beberapa pertimbangan :
• Di tengah kota besar tidak memungkinkan dipasang SUTT, karena sangat sulit mendapatkan tanah untuk tapak tower.
• Untuk Ruang Bebas juga sangat sulit dan pasti timbul protes dari masyarakat, karena padat bangunan dan banyak gedung-gedung tinggi.
• Pertimbangan keamanan dan estetika.
• Adanya permintaan dan pertumbuhan beban yang sangat tinggi.

Jenis kabel yang digunakan:
• Kabel yang berisolasi (berbahan) Poly Etheline atau kabel jenis Cross Link Poly Etheline (XLPE).
• Kabel yang isolasinya berbahan kertas yang diperkuat dengan minyak (oil paper impregnated).

Inti (core) kabel dan pertimbangan pemilihan:
• Single core dengan penampang 240 mm2 – 300 mm2 tiap core.
• Three core dengan penampang 240 mm2 – 800 mm2 tiap core.
• Pertimbangan fabrikasi.
• Pertimbangan pemasangan di lapangan.

Kelemahan SKTT:
• Memerlukan biaya yang lebih besar jika dibanding SUTT.
• Pada saat proses pembangunan memerlukan koordinasi dan penanganan yang kompleks, karena harus melibatkan banyak pihak, misal : pemerintah kota (Pemkot) sampai dengan jajaran terbawah, PDAM, Telkom, Perum Gas, Dinas Perhubungan, Kepolisian, dan lain-lain.

Panjang SKTT pada tiap haspel (cable drum), maksimum 300 meter. Untuk desain dan pesanan khusus, misalnya untuk kabel laut, bisa dibuat tanpa sambungan sesuai kebutuhan.

Pada saat ini di Indonesia telah terpasang SKTT bawah laut (Sub Marine Cable) dengan tegangan operasi 150 KV, yaitu:
• Sub marine cable 150 KV Gresik – Tajungan (Jawa – Madura).
• Sub marine cable 150 KV Ketapang – Gilimanuk (Jawa – Bali).

Beberapa hal yang perlu diketahui:
• Sub marine cable ini ternyata rawan timbul gangguan.
• Direncanakan akan didibangun sub marine cable Jawa – Sumatera.
• Untuk Jawa – Madura, saat ini sedang dibangun SKTT 150 KV yang dipasang (diletakkan) di atas Jembatan Suramadu.

4. SALURAN UDARA TEGANGAN MENENGAH (SUTM) 6 KV – 30 KV

• Di Indonesia, pada umumnya tegangan operasi SUTM adalah 6 KV dan 20 KV. Namun secara berangsur-angsur tegangan operasi 6 KV dihilangkan dan saat ini hampir semuanya menggunakan tegangan operasi 20 KV.
• Transmisi SUTM digunakan pada jaringan tingkat tiga, yaitu jaringan distribusi yang menghubungkan dari Gardu Induk, Penyulang (Feeder), SUTM, Gardu Distribusi, sampai dengan ke Instalasi Pemanfaatan (Pelanggan/ Konsumen).
• Berdasarkan sistem pentanahan titik netral trafo, efektifitas penyalurannya hanya pada jarak (panjang) antara 15 km sampai dengan 20 km. Jika transmisi lebih dari jarak tersebut, efektifitasnya menurun, karena relay pengaman tidak bisa bekerja secara selektif.
• Dengan mempertimbangkan berbagai kondisi yang ada (kemampuan likuiditas atau keuangan, kondisi geografis dan lain-lain) transmisi SUTM di Indonesia melebihi kondisi ideal di atas.

5. SALURAN KABEL TEGANGAN MENENGAH (SKTM) 6 KV – 20 KV

Ditinjau dari segi fungsi , transmisi SKTM memiliki fungsi yang sama dengan transmisi SUTM. Perbedaan mendasar adalah, SKTM ditanam di dalam tanah.

Beberapa pertimbangan pembangunan transmisi SKTM adalah:
• Kondisi setempat yang tidak memungkinkan dibangun SUTM.
• Kesulitan mendapatkan ruang bebas (ROW), karena berada di tengah kota dan pemukiman padat.
• Pertimbangan segi estetika.

Beberapa hal yang perlu diketahui:
• Pembangunan transmisi SKTM lebih mahal dan lebih rumit, karena harga kabel yang jauh lebih mahal dibanding penghantar udara dan dalam pelaksanaan pembangunan harus melibatkan serta berkoordinasi dengan banyak pihak.
• Pada saat pelaksanaan pembangunan transmisi SKTM sering menimbulkan masalah, khususnya terjadinya kemacetan lalu lintas.
• Jika terjadi gangguan, penanganan (perbaikan) transmisi SKTM relatif sulit dan memerlukan waktu yang lebih lama jika dibandingkan SUTM.
• Hampir seluruh (sebagian besar) transmisi SKTM telah terpasang di wilayah PT. PLN (Persero) Distribusi DKI Jakarta & Tangerang.

6. SALURAN UDARA TEGANGAN RENDAH (SUTR) 40 VOLT – 1000 VOLT

Transmisi SUTR adalah bagian hilir dari sistem tenaga listrik pada tegangan distribusi di bawah 1000 Volt, yang langsung memasok kebutuhan listrik tegangan rendah ke konsumen. Di Indonesia, tegangan operasi transmisi SUTR saat ini adalah 220/ 380 Volt.

Radius operasi jaringan distribusi tegangan rendah dibatasi oleh:
• Susut tegangan yang disyaratkan.
• Luas penghantar jaringan.
• Distribusi pelanggan sepanjang jalur jaringan distribusi.
• Sifat daerah pelayanan (desa, kota, dan lain-lain).
• susut tegangan yang diijinkan adalah + 5% dan – 10 %, dengan radius pelayanan berkisar 350 meter.

Saat ini transmisi SUTR pada umumnya menggunakan penghantar Low Voltage Twisted Cable (LVTC).

7. SALURAN KABEL TEGANGAN RENDAH (SKTR) 40 VOLT – 1000 VOLT

Ditinjau dari segi fungsi, transmisi SKTR memiliki fungsi yang sama dengan transmisi SUTR. Perbedaan mendasar adalah SKTR di tanam didalam di dalam tanah. Jika menggunakan SUTR sebenarnya dari segi jarak aman/ ruang bebas (ROW) tidak ada masalah, karena SUTR menggunakan penghantar berisolasi.

Penggunaan SKTR karena mempertimbangkan:
• Sistem transmisi tegangan menengah yang ada, misalnya karena menggunakan transmisi SKTM.
• Faktor estetika.

Oleh karenanya transmisi SKTR pada umumnya dipasang di daerah perkotaan, terutama di tengah-tengah kota yang padat bangunan dan membutuhkan aspek estetika.

Dibanding transmisi SUTR, transmisi SKTR memiliki beberapa kelemahan, antara
lain:
• Biaya investasi mahal.
• Pada saat pembangunan sering menimbulkan masalah.
• Jika terjadi gangguan, perbaikan lebih sulit dan memerlukan waktu relatif lama untuk perbaikannya.
#Maaf ini hanya tugas
ilmulistrik.com